основанный на чётко сформулированных правилах формальный аппарат оперирования со знаками определённого вида, позволяющий дать исчерпывающе точное описание некоторого класса задач, а для некоторых подклассов этого класса (лишь для наиболее простых И., совпадающих с ним) - и
Алгоритмы решения. Примерами И. могут служить совокупность арифметических правил оперирования с цифрами (т. е. числовыми знаками), "буквенное" И. элементарной алгебры, дифференциальное И., интегральное И., вариационное И. и другие ветви математического анализа и теории функций. Несмотря на раннее происхождение, термин "И." употреблялся в математике до недавнего времени без строгого общего определения. С развитием математической логики возникла
потребность в общей теории И. и в уточнении самого понятия "И.", которое подверглось более последовательной формализации. В большинстве случаев, однако, оказывается достаточным следующее (идущее от Д.
Гильберта) представление об И. Рассматривается некоторый (вообще говоря, бесконечный, хотя и, быть может, задаваемый посредством конечного числа символов) алфавит, из элементов которого, именуемых буквами, с помощью четко сформулированных правил образования строятся формулы рассматриваемого И. (называемые также иногда словами, или выражениями). Некоторые из таких ("правильно построенных") формул объявляются аксиомами, а из них с помощью правил преобразования (или, иначе, правил вывода) "выводятся" новые формулы, называемые теоремами данного И. Иногда термин "И." относят лишь к "словарной" ("выразительной") части описанного построения, говоря, что присоединение к ней "дедуктивной" части (т. е. добавление к алфавиту и правилам образования аксиом и правил ввода) даёт формальную систему. Впрочем, эти термины часто считают синонимичными (и в качестве синонимов пользуются также терминами "логистическая система", "формализм", "формальная теория" и многими др.). Если такое неинтерпретированное ("бессмысленное") И. сопоставить с некоторой интерпретацией (См.
Интерпретация) (или, как говорят, дополнить чисто синтаксические рассмотрения некоторой семантикой; см.
Логическая семантика) то
получают
Формализованный язык. Представление содержательных логических (и логико-математических) теорий в виде формализованных языков есть характерная особенность математической логики (см. также
Доказательство).